

0040-4020(94)E0296-6

Generation of a Configurationally Stable, Enantioenriched α-Oxy-α-methylbenzyllithium: Stereodivergence of Its Electrophilic Substitution¹

Axel Carstens, Dieter Hoppe*#

Institut für Organische Chemie der Universität Kiel Olshausenstr. 40-60, D-24118 Kiel, Germany

Abstract: The deprotonation of (R)- or (S)-1-phenylethyl N,N-diisopropylcarbamate with s-butyllithium/TMEDA in unpolar solvents (e.g. ether or hexane) at -78°C produces configurationally stable ion pairs which are substituted stereospecifically by different electrophiles. In several examples, complete stereoretention or inversion, respectively, was achieved. Electrophiles, which have an energetically low LUMO, such as acid chlorides, heterocumulenes and trialkyltin chlorides prefer antarafacial attack. If the leaving group has a high tendency to interact with the lithium cation, such as in esters, suprafacial substitution with retention takes place.

Chiral, heterosubstituted carbanions and the factors, influencing their rate of racemization, are of current interest in enantioselective synthesis¹. Enantiomerically enriched α -lithiated alkyl ethers² 1a,

Scheme 1

O-alkyl carbamates³ 1b, N-alkyl carbamates⁴ 1c and related compounds⁵, alkyl aryl sulfoxides^{6,7} 1d, and alkyl trifluoromethyl sulfones^{7,8} 1e were shown to exhibit a synthetically useful extent of configurational stability in ethereal solvents at low temperatures.

The introduction of a phenyl group for \mathbb{R}^2 into 1 enhances the stability of the carbanion by resonance leading to increasing planarization of the carbanionic center^{9,10,11} and to a higher tendency for the formation of solvent-separated ion pairs. Both factors are suspected to facilitate the migration of the lithium cation from one enantiotopic face to the other one by intra- and intermolecular processes and thus, promoting racemization. As a consequence, enantiomerically enriched benzyllithium derivatives, bearing solely a center of chirality at the carbanion moiety, were unknown before 1990. Short-lived chiral α,α -dialkylbenzyl¹² or α -oxybenzyl carbanions¹³, formed as transient intermediates, could be trapped by very reactive electrophiles. An activation barrier of enantiomerization of 16 kcal/mol was determinated in the lithium salt of racemic (1,2-diphenylethyl) trifluoromethyl sulfone^{8a}, this implicates that the enantiomerically enriched compound should racemize only slowly. It was demonstrated by the Hoffmann racemization test¹⁴, which can be carried out with racemic samples, that α -methyl-¹⁵, α -phenylthio-¹⁶, α -phenylselenyl-¹⁶, and α -trimethylsilyl-benzyllithium¹⁶ enantiomerize in THF at -78°C at a rate, which is higher than that of the addition to aldehydes. Cyclic α -amino-benzyllithium derivatives epimerize rapidly at the benzylic center¹⁰.

Lithiation. We expected that clamping the lithium cation in a tight chelate complex would hamper its migration from one enantiotopic face of the carbanion to the other one and, in addition, would slow down intermoleculare exchange processes. N,N-Dialkylcarbamoyloxy groups, introduced by $us^{14b,17}$ in order to enhance the kinetic acidity in lithiation reactions and to direct the regioselectivity in electrophilic substitution of allyllithium derivatives¹⁸, turned out to be ideally suited for this purpose. The application of the "carbamate trick" led to the hitherto only known type of configurationally stable allyllithium derivatives¹⁹ **3**, and as well, to enantioenriched 1-oxy-alkynyl derivatives²⁰ **4**, which are formed by deprotonation of the non-racemic precursors in unpolar solvents below -70°C in the presence of 1 equiv. of N,N,N',N'-tetramethylethylenediamine.

Now we investigated the lithiation of (R)- and (S)-1-phenylethyl N,N-diisopropyl-carbamate¹ [(R)-and (S)-5]. These were prepared by the usual method²¹ from the enantiomerically enriched alcohols ($\geq 97\% \ ee$) obtained by enzymatic hydrolysis according to Schneider²².

The deprotonation of (R)- or (S)-5 by means of 1.1 equiv. s-butyllithium/TMEDA at -78°C in hexane or pentane was complete within 5 min. Addition of Me_3SiCl , after stirring at -78°C, afforded the optically active silane (-)-7 of unknown configuration²³ with 94 % yield and 96 % *ee.* The identical result was obtained, when the reaction was performed in diethyl ether as solvent. Virtually no racemization had occured under the reaction conditions and the subsequent silylation had proceeded stereospecifically.

The influence of the solvent, the additive, and the counter ion was studied in a series of allylation experiments. The results underline the importance of a tight ion pair for the configurative stability⁴¹. In THF, as also recently reported by Gawley²⁴, or by using a Schlosser-mixture²⁵ in ether, the formation of a racemic product **8** resulted. Interestingly, the high degree of ion separation in these experiments could be visually recognized by the deep red colour of the reaction mixture, which under usual conditions appears yellow to orange.

Closer investigations on the structure of the ion pair have not been accomplished yet. Theoretical calculations on the deprotonation by lithium bases predict stereoretention²⁶ and this is supported by the sum of experimental evidence shown below. The monomeric structure of the chelate complex **6** is deduced from the X-ray structures of related lithiated allyl carbamates²⁷ and of a benzyllithium • TMEDA • THF complex²⁸.

Stereochemistry of the protonation, stannylation, and acylation. Cram et al.²⁹ studied already in the late fifties short-lived, chiral α, α -dialkylbenzyl anions, generated by deprotonation or by several anionic fragmentation reactions in the presence of proton donors. Sense and direction of the chirality transfer largely depended on the conditions and the proton source. Transient tertiary benzyl anions, produced by Haller-Bauer cleavage³⁰, usually were protonated with stereoretention, whereas α -oxy-substituted benzyl anions, being involved in the Brook^{13a} and reverse Brook^{13b,31} rearrangement, usually reacted with inversion. Due to the non-availability of configurationally stable benzyllithium compounds, no systematic studies on the stereochemistry of electrophilic attack by various electrophiles had been undertaken. Anions, which bear a further stereogenic center, are problematic in this respect, since it is impossible to separate the effects of stereospecificity and of chiral induction¹⁰.

The lithium carbanions 6, for the first time, permitted an investigation of chiral benzylic carbanions, untouched by the problems mentioned above¹. The stereochemistry of stannylation and protonation was uncovered by the following reaction sequence: (-)-(S)-5 (≥ 99 % *ee*) was deprotonated and reacted with Me₃SnCl to afford the stannane (-)-9 with 92 % yield. The *ee*-value could not be determined on this stage. (-)-9 was cleaved with *n*-BuLi in ether and the ether complex 6' quenched with methanol to afford the enantiomer (+)-(R)-5 of the starting material with 65 % yield and ≥ 95 % *ee*. The deprotonation of the carbamate (+)-(R)-5, followed by methanolysis, proceeds with overall retention, however the protonation by means of acetic acid or triphenylmethane caused inversion. Since all lithiodestannylation reactions, known in their stereochemical course, take place with stereoretention³², the described stannylation of 5 must have occured with inversion. So the reaction outlined above permits the stereospecific inversion of a chiral benzyllithium, which might be of synthetic interest.

Scheme 5

The trimethylplumbylation^{33,34} of (S)-6, via (-)-(S)-10 followed by lithio-deplumbylation and methanolysis took, a little less efficiently, the same stereochemical course.

Several carbonyl and heterocarbonyl compounds were allowed to react with the lithium carbanion, derived either from (R)-5 (97 % ee) or (S)-5 (\geq 99 % ee), and the sense and degree of stereospecificity were determined (Scheme 7, Table 1). Methyl carboxylates (entries 6, 7, 11, 12) yielded the appropriate ketones 11 or ent-11 with almost complete stereoretention, similarly to dimethyl carbonate (entry 1). Acid chlorides (entries 10 and 13), on the other hand, exhibit complete stereoinversion, which is slightly diminished for methyl chlorocarbonate (entry 2). Interestingly, also methyl cyanoformate (entry 5) causes inversion, but acid anhydrides (entries 3, 8, 9) react with retention, though to a reduced extent. Heterocumulenes, such as carbon dioxide and disulfide (entries 4 and 14) or isopropyl isocyanate (entry 15) again prefer the attack from the rear face.

How can the stereodivergence of electrophilic substitution, which is determined by the type of electrophile, and as well, by the nucleofugic leaving group be explained? We propose as a working hypothesis the following: Non-mesomerically stabilized α -oxyalkyllithium derivatives, being sp³-hybridized, react with all investigated electrophiles under clean stereoretention^{2,3}. Benzyllithium derivatives have a flattened - but not completely planar - carbanionic moiety⁹ and, thus, have a consider-

able electron density at the rear face. The attacking electrophile, figuratively speaking, has the choice of approaching antarafacially, avoiding hindrance by the complexed cation (path A, inversion), or, alternatively, taking advantage from an interaction with the lithium cation in a suprafacial attack (path B, retention). Those electrophiles, which prefer antarafacial attack (e. g. acid chlorides, cyanides, heterocumulenes, and stannyl chlorides), possess an energetically low LUMO, but do not have particularly good complexing groups for the lithium cation. The pre-complexation however dictates the reaction path, if a good electron-donating ability to lithium and a less favourable LUMO is involved (for esters, alcohols, or aliphatic aldehydes and ketones³⁵, or alkyl halides¹). Obviously, acyl anhydrides constitute a borderline case with an energetic difference of less than 1.5 kcal/mol between both competing reaction paths. The protonation experiment with acetic acid, causing inversion, seems to contradict the hypothesis. Presumably, here an intermediate ammonium salt is the actual proton source.

Table 1 Acylation of lithium compounds 6

Entry	Educt	Electrophile /Conditions ^a)	Product	R	Yield (%)	ee (%)	Conf.	Course
1	(R)-5 ^{c)}	MeOC(=0)OMe /C	11a	OMe	85	94	(-)-(R)	Ret.
2	(R)-5 ^{c)}	MeOC(=O)Cl/C	ent-11a	OMe	90	85	(+)-(S)	Inv.
3	(R)-5 ^{c)}	MeOC(=O)-OCO ₂ Me /C	11a	OMe	40	62	(-)-(<i>R</i>)	Ret.
4	(R)-5 ^{c)}	CO ₂ /C	ent-11a ^{d)}	OMe	84	84	(+)-(<i>S</i>)	Inv.
5	(S)-5 ^{e)}	MeC(=O)CN /A	11a	OMe	43	92	(-)-(R)	Inv.
6	(S)-5 ^{e)}	H-C(=O)OMe /A	ent-11b	н	60	≥95	(-)-(<i>S</i>)	Ret.
7	(S)- 5 ^{e)}	MeC(=O)OMe /A	ent-11c	Me	60	≥95	(-)-(<i>S</i>)	Ret.
8	(S)-5 ^{e)}	MeC(=O)OAc /A	ent-11c	Me	53	76	(-)-(<i>S</i>)	Ret.
9	(S)-5 ^{e)}	MeC(=O)OAc /B	ent-11c	Me	35	60	(-)-(<i>S</i>)	Ret.
10	(S)- 5 °)	MeC(=O)Cl/A	11c	Me	35	≥ 95	(+)-(<i>R</i>)	Inv.
11	(S)- 5 ^{e)}	<i>i</i> PrC(=O)OMe /A	ent-11d	iPr	94	≥ 95	(-)-(<i>S</i>)	Ret.
12	(S)-5 ^{e)}	PhC(=O)OMe /A	ent-11e	Ph	95	≥95	(-)-(<i>S</i>)	Ret.
13	(S)-5 ^{e)}	PhC(=O)Cl/A	11e	Ph	95	≥95	(+)-(<i>R</i>)	Inv.
14	(S)-5 ^{e)}	S=C=S/A	12 ^{f)}	-	67	≥95	(+)-(R)	Inv.
15	(S)-5 ^{e)}	iPr-N=C=O/A	13	-	90	85	(-)-(R)	Inv.

a) Conditions for deprotonation; A: 5 min in ether; B: 5 min in pentane; C: 30 min hexane.

b) Determinated by ¹H-NMR, see experimental part. c) 97 % ee. d) After methylation of the crude acid with CH_2N_2 . e) \geq 95 % ee. f) After methylation of the dithiocarboxylate with MeI.

Stereochemical correlations. All new enantioenriched compounds (except for (-)-7, (+)-8, and ent-11d) were correlated by chemical transformations via relais compounds with (+)-(S)-atrolactic acid³⁶ (14) and (+)-(S)-2-methyl-3-phenyl-2,3-butanediol³⁷ or, respectively, with the corresponding enantiomers. Scheme 8 summarizes the results without further comment. The allylation product (+)-(R)-8³⁵ was shown to have the same configuration as (+)-(R)-2-phenyl-2-butanol³⁸.

a) The reaction was performed with the enantiomeric compound.

EXPERIMENTAL

Diethyl ether, hexane, and pentane were dried by distillation in Ar atmosphere over LiAlH₄; TMEDA and pyridine were distilled over CaH₂. The content of approx. 1.4M s-BuLi soln. in cyclohexane/isopentane was determined by titration with diphenylacetic acid³⁸ before use. Separation on scales below 2 mmol were carried out by flash LC on silica gel 32-63 μ m. NMR spectra were recorded on spectrometers EM 360 and EM 390 (Varian) or AM 300 and AC 200 (Bruker). ¹H NMR spectroscopic determinations of *ee*-values were carried out with the chiral shift reagent Eu(hfc)₃ in CDCl₃ solution and the racemates were used for standards. Optical rotations were recorded with the polarimeter 241 (Perkin-Elmer) in 1 dm cuvettes.

(*R*)- or (*S*)-1-Phenylethyl N,N-diisopropylcarbamate [(*R*)- or (*S*)-5]. (*R*)- or (*S*)-1-phenylethanol²² (\geq 97 % ee, 38.0 g, 0.31 mol), dry pyridine (34.8 g, 0.44 mol), N,N-diisopropylcarbamoyl chloride (49.1 g, 0.30 mol) were stirred at 90°C for 10 h. Then, the reaction mixture was chilled to room temp. and poured to a slurry of ice (150 g), 35 proc. aqu. HCl (60 mL), and ether (150 mL). The aqu. soln. was extracted with ether (3 x 60 mL). After drying (MgSO₄) and evaporation of the solvent under reduced pressure, the residue was purified by LC (silica gel, ether/pentane 1:10) to yield 71.4 g (92 %) 5 as colourless oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.20 [d, ³J_{1P}= 6.7 Hz, NCH(CH₃)₂], 1.55 (d, ³J₁₂= 6.6 Hz, 2-H₃, 3.94 (qq, NCH), 5.85 (q, 1-H), 7,21-7.39 (m, Ar-H). IR (neat): 1690 cm⁻¹ (C=O). (*R*)-5, 97 % ee, $[\alpha]_D^{20} = +5.1$ (c = 1.2, CH₂Cl₂). (*S*)-5, \geq 99 % ee, $[\alpha]_D^{20} = -5.5$ (c= 1.2, CH₂Cl₂). C₁₅H₂₃NO₂ (249.36) calc. C 72.25 H 9.30 found C 72.41 H 9.29.

Lithiation and electrophilic substitution of (R)- or (S)-5. To a solution of (R)- or (S)-5 (97 or \geq 99 % ee, resp.; 249 mg, 1.00 mmol) and N,N,N',N'-tetramethylethylenediamine (128 mg, 1.10 mmol) in dry ether (2 mL, conditions A), pentane (2 mL, conditions B), hexane (2 mL, conditions C) was added dropwise with a syringe within 2 min below -70°C approx. 1.4M s-butyllithium in cyclohexane/isopentane

(1.10 mmol). Stirring of the solution of the lithium compound 6 was continued for 5 min (for A and B) or for 30 min (for C) before the electrophile (1.10 mmol) in ether (1 mL) was added. Stirring was continued for 30 min at -78°C. The reaction mixture was allowed to warm to 20°C within 30 min, 2N aqu. HCl (2 mL) was added, the agu. soln. extracted with ether (3 x 20 mL), the etheral soln. washed with sat. agu. NaHCO₃ (20 mL). After drying (MgSO₄), evaporation of the solvent i. vak., the residue was purified by LC (silica gel, ether/pentane 1:2-20). The ee-values were determined by ¹H NMR spectroscopy (if not stated otherwise).

Protonation of (R)-6. The solution of (R)-6, prepared from (R)-5 (97 % ee), conditions C, was reacted

with 1.1 equiv. of "acid" as the electrophile. With methanol: 194 mg (78 %) (R)-5, 78 % ee, $[\alpha]_D^{20}$ = +4.0 (c= 1, CH₂Cl₂). - With acetic acid: 186 mg (74 %) (S)-5, 79 % ee, $[\alpha]_D^{20}$ = -3.3 (c= 0.76, CH₂Cl₂). - With triphenylmethane: 114 mg (46 %) (S)-5, 80 % ee, $[\alpha]_D^{20}$ = -4.2 (c = 1, CH₂Cl₂).

(-)-1-Phenyl-1-(trimethylsilyl)ethyl N,N-diisopropylcarbamate [(-)-7]. From (R)-5 and Me₃SiCl, conditions C, 302 mg (94 %), oil; 96 % ee, $[\alpha]_D^{20}$ = -17.3 (c= 2.3, CH₂Cl₂). NMR and microanalytical data see table 2.

(+)-(R)-1-Methyl-1-phenylbut-3-enyl N,N-diisopropylcarbamate [(R)-8]. From (S)-5 and 1-chloro-2-propene; A: 278 mg (96 %), oil; 84 % ee; B: 253 mg (88 %), 83 % ee, $[\alpha]_D^{20} = +15.6$ (c = 1, CH_2Cl_2).

Following the procedure in THF as solvent afforded 127 mg (44 %) (R)-8, 5 % ee, $[\alpha]_{D}^{20} = +1.1$ (c = 1.1, CH₂Cl₂).

Deprotonation with potassium t-pentoxide/butyllithium: To a soln. of (S)-5 (249 mg, 1.00 mmol) in ether (2 mL) were sequentially added below -70°C 1.7M potassium t-pentylate in toluene (0.65 mL, 1.10 mmol) and 1.73M butyllithium in hexane (0.63 mL, 1.10 mmol). After 2 min stirring, 1-chloro-2-propene (84 mg, 1.1 mmol) was added. The red colour of the reaction mixture disappeared immediately and workup was accomplished as described above. Yield: 176 mg (61 %) rac-8.

(-)-(S)-1-Phenyl-1-(trimethylstannyl)ethyl N,N-diisopropylcarbamate [(S)-9]. From (S)-5 (3.24 g, 13 mmol), A, and trimethyltin chloride (2.69 g, 13.5 mmol), LC with ether/pentane (1:20), 4.93 g (92 %) (S)-9; m.p. 62°C (without solvent), were obtained. $[\alpha]_D^{20}$ = -77.0 (c = 1.2, CH₂Cl₂), \geq 95 % ee (see below).

Lithio-destannylation of (S)-9 and methanolysis. To a soln. of (S)-9 (206 mg, 0.50 mmol) in ether (2 mL) was added 1.73M butyllithium in hexane (0.32 mL, 0.55 mmol) below -70°C. After stirring for 5 min, the reaction mixture was quenched with methanol (20 mg, 0.60 mmol). The subsequent workup was accomplished as described above and yielded 81 mg (65 %) (R)-5, \geq 95 % ee, $[\alpha]_D^{20} = +6.1$ (c = 0.7, $CH_2C\bar{l_2}$).

(-)-(S)-1-Phenyl-1-(trimethylplumbyl)ethyl N.N-diisopropylcarbamate [(S)-10]. From (S)-5 and trimethyllead promide³³ (dissolved in 1 mL THF), yield 443 mg (88 %) (S)-10, m.p. 54°C (without solvent), $[\alpha]_D^{20} = -61.1$ (c = 1, CH₂Cl₂), $\ge 85\%$ ee (see below).

Lithio-deplumbylation of (S)-10 and methanolysis: The procedure, described for 9, afforded 77 mg (62 %) (R)-5 with 85 % ee.

(-)-(R)- and (+)-(S)-Methyl 2-(N,N-diisopropylcarbamoyloxy)-2-phenylpropanoate (11a and ent-11a). From (R)-5 and dimethyl carbonate, C, 261 mg (85 %) 11a, m.p. 80°C (ether/pentane), 94 % ee, $[\alpha]_D^{20} = -7.5$ (c= 1.2, CH₂Cl₂). - With methyl chloroformate, C, 277 mg (90 %) ent-11a, 85 % ee, $[\alpha]_D^{20} = +6.9$ (c= 1.1, CH₂Cl₂). - With dimethyl dicarbonate, C, 123 mg (40 %) 11a, 62 % ee, $[\alpha]_D^{20} = -5.2$ (c = 1.0, CH₂Cl₂). - With carbon dioxide, C (no NaHCO₃ extraction, esterification of the crude acid with diazomethane), 258 mg (84 %) ent-11a, 84 % ee, $[\alpha]_D^{20} = +6.8$ (c = 1.4, CH₂Cl₂). - With (S)-5 and methyl cyanoformate, A, 133 mg (43 %) 11a, 92 % ee, $[\alpha]_D^{20} = -6.2$ (c = 1.2, CH₂Cl₂).

(-)-(S)-2-(N,N-Diisopropylcarbamoyloxy)-2-phenylpropanal (ent-11b). From (S)-5 and methyl formate, A, crystallization from pentane, 167 mg (60 %), m.p. 105° C, $\geq 95 \% ee$, $[\alpha]_D^{20} = -116.1$ (c = 0.7, CH₂Cl₂).

(+)-(R)-and (-)-(S)-3-(N,N-Diisopropylcarbamoyloxy)-3-phenyl-2-butanone (11c and ent-11c). From (S)-5 and methyl acetate, A, 173 mg (60 %), m.p. 62°C (no solvent), ent-11c, ≥ 95 % ee, $[\alpha]_D^{20} = -124.1$ (c = 1.1, CH₂Cl₂). - With acetic acid anhydride, A, 154 mg (53 %) ent-11c, 76 % ee, $[\alpha]_D^{20} = -94.3$ (c = 1.3, CH₂Cl₂). - With acetic acid anhydride, B, 101 mg (35 %), ent-11c, 60 % ee, $[\alpha]_D^{20} = -74.2$ (c = 1.3, CH₂Cl₂). - With acetyl chloride, A, 100 mg (35 %), 11c, ≥ 95 % ee, $[\alpha]_D^{20} = +111.7$ (c = 1.1, CH₂Cl₂).

Table 2. Selected IR, ¹ H NMR	, ¹³ C NMR data (p	pm, CDCl ₃) an	d microanalytical	data of the con	npounds 7 - 16
--	-------------------------------	----------------------------	-------------------	-----------------	----------------

	IR	CH ₃	El, ¹ H	Mol. Formula	C,H (calc.)
	(cm ⁻¹)	(<i>C</i> H ₃)	(El, ¹³ C)	(Mol. Weight)	C,H (found)
_	1600 840	1.90 (s)	0.01 (s)	C ₁₈ H ₃₁ NO ₂ Si	С 67.24 Н 9.72
	1090, 840	(22.45)	(-2.98)	(321.54)	C 67.26 H 9.86
	1 (00)	1.82 (s)	2.81 (ddt),5.01-5.12 (m),	C ₁₈ H ₂₇ NO ₂	С 74.70 Н 9.40
8	1090	(25.38)	(47.09, 118.37, 133.48)	(289.42)	C 74.84 H 9.50
9		1.83 (s)	-0.03 (s)	C ₁₈ H ₃₁ NO ₂ Sn	С 52.45 Н 7.58
	1670, 760	(25.49)	(-6.83)	(412.16)	С 52.28 Н 7.63
10		2.03 (s)	0.60 (s)	C ₁₈ H ₃₁ NO ₂ Pb	
	1675, 760	(26.74)	(-2.98)	(500.65)	a)
11a	1725 1700	1.98 (s)	3.69 (s)	C ₁₇ H ₂₅ NO ₄	С 66.43 Н 8.76
	1755, 1700	(25.20)	(52.24, 172.13)	(307.39)	С 66.27 Н 8.71
11b	1720 1600	1. 84 (s)	9.47 (s)	C ₁₆ H ₂₃ NO ₃	С 69.29 Н 8.36
	1720, 1090	(21.33)	(194.34)	(277.36)	C 69.24 H 8.54
11c	1710, 1680	1.85 (s)	1.96 (s)	C ₁₇ H ₂₅ NO ₃	C 70.07 H 8.65
	1,10,1000	(23.61)	(23.88, 204.19)	(291.39)	С 70.28 Н 8.72
11a	1710, 1700	1.87 (s)	0.44 (d), 1.06 (d), 2.86 (qq)	$C_{19}H_{29}NO_3$	С 71.44 Н 9.15
		(24.20)	(19.47, 22.27, 34.06, 211.78	3) (319.44)	С 71.39 Н 9.36
	1500 1605	1.98 (s)	7.18-7.71 (m)	C ₂₂ H ₂₇ NO ₃	С 74.76 Н 7.70
11e	1700, 1085	(27.84)	(127.57, 128.88, 151.25, 136.71, 197.30)	(353.46)	С 74.92 Н 7.75
		2 27 (a)	2.54 (c)		C 60 14 H 7 42
12	1705, 1315	(28.34)	(19.79, 237.62)	(33952)	C 60 25 H 7 65
		(20.51)	(1), 20,102)	(333.02)	0 00.20 11 1.00
13	3335 1705,,	1.96 (s)	1.06 (d), 1.12 (d), 4.08 (qq),	C ₁₉ H ₃₀ N ₂ O ₃	C 68.23 H 9.04
	1655	(25.19)	(22.51, 22.58, 41.43, 170.84	(334.46)	C 68.42 H 9.17
15		1.73 (s)	3.95 (dd), 4.90 (t)	C ₁₆ H ₂₅ NO ₃	С 68.79 Н 9.02
	3450, 1670	(24.50)	(70.63)	(279.38)	C 68.92 H 8.89
16	2400 1670	1.96 (s)	1.09-1.26 (m), 3.47(s)	C ₁₈ H ₂₉ NO ₃	С 70.32 Н 9.51
	3400, 1670	(21.07)	(25.05, 26.43, 74.71)	(307.43)	С 70.10 Н 9.38

a) No correct microanalysis could be obtained due to partial decomposition.

(-)-(S)-2-(N,N-Diisopropylcarbamoyloxy)-4-methyl-2-phenyl-3-pentanone (ent-11d). From (S)-5 and methyl 2-methylpropanoate, A, 300 mg (94 %) ent-11d, m.p. 58°C (no solvent), ≥ 95 % ee, $[\alpha]_D^{20}$ = -134.2 (c = 1.0, CH₂Cl₂).

(+)-(R)- and (-)-(S)-2-(N,N-Diisopropylcarbamoyloxy)-1,2-diphenyl-1-propanone (11e and ent-11e). From (S)-5 and methyl benzoate, A, 336 mg (95 %) ent-11e, m.p. 105°C (no solvent), \geq 95 % ee; $[\alpha]_D^{20}$ = -104.7 (c = 1.1, CH₂Cl₂). - With benzoyl chloride, A, 304 mg (86 %) 11e, \geq 95 % ee, $[\alpha]_D^{20}$ = +113.0 (c = 1.1, CH₂Cl₂).

(+)-(R)-S-Methyl 2-(N,N-Diisopropylcarbamoyloxy)-2-methylpropanedithioate (12). From (S)-5 and carbon disulfide, A, followed by addition of 1 equiv. of methyl iodide, 229 mg (67 %) 12, m.p. 82°C (no solvent), ≥ 95 % ee; $[\alpha]_D^{20}$ = +242.0 (c = 0.6, CH₂Cl₂).

(-)-(R)-2-(N,N-Diisopropylcarbamoyloxy)-N-isopropyl-2-phenyl-propanamide (13). From (S)-5 and isopropyl isocyanate, A, 246 mg (74 %) 13, m.p. 69°C (no solvent), ≥ 85 % ee (see below), $[\alpha]_D^{20}$ = -0.8 (c = 1.1, CH₂Cl₂).

Conversion into 11a. 334 mg (1.00 mmol) 13 and Ba(OH)₂·8 H₂O (950 mg, 3.0 mmol) in methanol (5 mL) were refluxed for 4h. Acidic workup, followed by diazomethane afforded 276 mg (90 %) 11a with 85 % *ee* and $[\alpha]_D^{20}$ = -6.8 (c = 1.1, CH₂Cl₂).

Stereochemical correlations

Conversion of (+)-(S)-atrolactic acid (ent-14) into ent-11a. To a soln. of (S)-atrolactic acid³⁷ (ent-14) (341 mg, 2.0 mmol), $[\alpha]_D^{20} = +35.9$ (c = 3.5, EtOH), in ether (4 mL) was added etheral diazomethane soln. until it remained yellow. Excess reagent was destroyed by addition of few silica gel and workup accomplished as usual. The crude methyl ester and (N,N)-diisopropylcarbamoyl chloride (655 mg, 4.0 mmol) yielded 490 mg (80 %) (-)-(S)-11a, ≥ 95 % ee, $[\alpha]_D^{20} = -8.9$ (c = 1.2, CH₂Cl₂).

Methyl carboxylate 11a from dithiocarboxylate 12. A soln. of (+)-(R)-12 (340 mg, 1.00 mmol) and of KOH (168 mg, 3.0 mmol) in methanol (5 mL) was refluxed for 30 min. 5N H₂SO₄ (1 mL) was added and the crude acid converted into the ester to yield 289 mg (94 %) (-)-(R)-11a, \geq 95 % ee, $[\alpha]_D^{20}$ = -8.2 (c = 1.0, CH₂Cl₂).

(-)-(R)- and (+)-(S)-(2-Hydroxy-1-methyl-1-phenylethyl) N,N-diisopropylcarbamate [15 and ent-15] from 11b and ent-11a. To a soln. of (-)-(S)-11b (277 mg, 1.00 mmol) in ether (2 mL) was added at 0°C 1M diisobutylaluminium hydride (DIBAH) in hexane (1.0 mmol) and stirring was continued for 2h. Usual workup and LC [silica gel, ether/pentane (1:1)] yielded 267 mg (96 %) (S)-15, m.p. 82°C (no solvent), $[\alpha]_D^{20} = +51.8$ (c = 1.1, CH₂Cl₂). Similarly, with 2.2 equiv. of DIBAH, were obtained from ent-11a 220 mg (R)-15 (79 %), \geq 95 % ee, $[\alpha]_D^{20} = -52.2$ (c = 1.1, CH₂Cl₂). Further data see table 2.

(+)-(R)-(1,2-Dimethyl-2-hydroxy-1-phenylpropyl) N,N-diisopropylcarbamate (16) from 11a. To a soln. of (R)-11a (307 mg, 1.00 mmol) in ether (5 mL) was added 3M methylmagnesium chloride in THF (0.73 mL, 2.2 mmol) and stirring was continued for 12h at 20°C. Usual workup and LC [silica gel, ether/pentane (1:4)] afforded 200 mg (65 %) (R)-16, m.p. 84°C (no solvent), $[\alpha]_D^{20}$ +32.4 (c = 1.1, CH₂Cl₂); ≥ 95 % *ee*. Further data see table 2.

Alcohol ent-16 from ketone ent-11c. To a soln. of ketone (-)-(S)-11c (178 mg, 0.61 mmol) in ether (2 mL) was added at 0°C 1.6M methyllithium in ether (0.42 mL, 0.67 mmol) and stirring continued for 30 min. Usual workup yielded 169 mg (90%) ent-16, $[\alpha]_D^{20}$ = -30.2 (c = 1.0, CH₂Cl₂).

Ketone 11e from (R)-atrolactic acid (14). (+)-(R)-2-hydroxy-1,2-diphenylpropan-1-one⁴⁰ (469 mg, 2.07 mmol), prepared from (-)-(R)-14, was converted (as described for 5) into (+)-(R)-11e, $[\alpha]_D^{20} = +98.2$ (c = 1.1, CH₂Cl₂); yield 488 mg (67 %).

Acknowledgement. - Generous support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

New address: Organisch-Chemisches Institut der Universität Münster, Corrensstr. 40, D-48149 Münster, Germany.

REFERENCES AND NOTES

- Preliminary communication: Hoppe, D.; Carstens, A.; Krämer, T. Angew. Chem. 1990, 102, 1455-1456; Angew. Chem. Int. Ed. Eng. 1990, 29, 1424-1425.
- 2. Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102, 1201-1202.
- Hoppe, D.; Hintze, F.; Tebben, P. Angew. Chem. 1990, 102, 1457-1459; Angew. Chem. Int. Ed. Eng. 1990, 29, 1422-1423.
- a) Pearson, W. H.; Lindbeck, A. C. J. Am. Chem. Soc. 1991, 113, 8546-8548. b) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708-9710.
- 5. Pearson, W. H.; Lindbeck, A. C.; Kampf, J. W. J. Am. Chem. Soc. 1993, 115, 2622-2636.
- 6. Nakamura, K.; Higaki, M.; Adachi, S.; Oka, S.; Ohno, A. J. Org. Chem. 1987, 52, 1414-1417.
- 7. Boche, G. Angew. Chem. 1989, 101, 286-306; Angew. Chem. Int. Ed. Engl. 1989, 28, 277-297.
- a) Gais, H.-J.; Hellmann, G.; Lindner, H. J. Angew. Chem. 1990, 102, 96-99; Angew. Chem. Int. Ed. Engl. 1990, 29, 100-103. b) Gais, H.-J.; Hellmann, G. J. Am. Chem. Soc. 1992, 114, 4439-4440.
- Zarges, W.; Marsch, M.; Harms, K., Koch, W., Frenking, G.; Boche, G. Chem. Ber. 1991, 124, 543-549.
- Rein, K.; Goicoechea-Pappas, M.; Anklekar, T. V.; Hart, G. C.; Smith, G. A.; Gawley, R. E. J. Am. Chem. Soc. 1989, 111, 2211-2217; Meyers, A. I.; Guiles, J.; Warmus, J. S.; Gonzales, M. A. Tetrahedron Lett. 1991, 32, 5505-5508.
- 11. A pyramidal carbon atom is not a precondition for the occurence of chirality in an ion pair as long the cation is connected to one particular enantiotopic face. For the situation in lithiated benzyl sulfones see ref. 7 and 8.
- a) Cram, D. J.; Mateos, J. L.; Hauck, F.; Langemann, A.; Kopecky, K. R.; Nielsen, W. D.; Allinger, J. J. Am. Chem. Soc. 1959, 81, 5774-5784. b) Paquette, L. A.; Gilday, J. P.; Ra, C. S. J. Am. Chem. Soc. 1987, 109, 6858-6860.
- a) Brook, A. G.; Pascoe, J. D. J. Am. Chem. Soc. 1971, 93, 6224-6227. b) Wright, A.; West, R. J. Am. Chem. Soc. 1974, 96, 3227-3232.
- a) Hirsch, R.; Hoffmann, R. W.; Chem. Ber. 1992, 125, 975-982. b) Hoffmann, R. W.; Lanz. J.; Metternich, R.; Tarara, G.; Hoppe, D. Angew. Chem. 1987, 99, 1196-1197; Angew. Chem. Int. Ed. Engl. 1987, 26, 1145-1146.
- 15. Hoffmann, R. W.; Rühl, T.; Chemla, F.; Zahneisen, T. Liebigs Ann. Chem. 1992, 725-730.
- 16. Hoffmann, R. W.; Rühl, T.; Harbach, J. Liebigs Ann. Chem. 1992, 725-730.
- a) Beak, P.; McKinney, B. G. J. Am. Chem. Soc. 1977, 99, 5213. b) Hoppe, D.; Brönneke, A. Tetrahedron Lett. 1983, 24, 1687-1690. c) Hoppe, D.; Brönneke, A. Synthesis 1982, 1045-1048.
- 18. Hoppe, D. Angew. Chem. 1984, 96, 930-948; Angew. Chem. Int. Ed. Engl. 1984, 23, 932-948.
- 19. a) Hoppe, D.; Krämer, T. Angew. Chem. 1986, 98, 171-173; Angew. Chem. Int. Ed. Engl. 1986, 25,

160-162. b) Krämer, T.; Hoppe, D. Tetrahedron Lett. 1987, 28, 5149-5252. c) Hoppe, D.; Krämer, T.; Schwark, J.-R.; Zschage, O. Pure Appl. Chem. 1990, 62, 1999-2006.

- 20. Dreller, S.; Dyrbusch, M.; Hoppe, D. Synlett 1991, 397-400.
- 21. Hoppe, D.; Hanko, R.; Lichtenberg, F.; v. Hülsen, E. Chem. Ber. 1985, 118, 2822-2851.
- 22. Laumen, K.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1988, 598-600.
- 23. By comparison of the sense of optical rotations of (-)-7 and the stannane (+)-9 arising from the same precursor with those of similar (1-silyl- and 1-stannylalkyl) carbamates, bearing the opposite sign of rotation but the same configuration, the (R)-configuration of (-)-7 is most likely, indicating stereoinversion.
- 24. Zhang, P.; Gawley, R. E. J. Org. Chem. 1993, 58, 3223-3224.
- 25. Schlosser, M. Pure Appl. Chem. 1988, 60, 1627-1634.
- 26. Jemmis, E. D.; Chandrasekhar, J.; v. R. Schleyer, P. J. Am. Chem. Soc. 1979, 101, 527-533.
- Marsch, M.; Harms, K.; Zschage, O.; Hoppe, D.; Boche, G. Angew. Chem. 1991, 103, 338-339; Angew. Chem. Int. Ed. Engl. 1991, 30, 321-323.
- 28. Zarges, W.; Marsch, M.; Harms, K.; Boche, G. Chem. Ber. 1989, 122, 2299-2302.
- 29. Cram, D. J.; Kingsbury, C. A.; Rickborn, B. J. Am. Chem. Soc. 1961, 83, 3688-3696.
- 30. Paquette, L. A.; Maynard, G. D.; Ra, C. S.; Hoppe, M. J. Org. Chem. 1989, 54, 1408-1418.
- 31. Linderman, R. J.; Ghannam, A. J. Am. Chem. Soc. 1990, 112, 2392-2398.
- 32. Reich, H. J.; Borst, J. P.; Coplien, M. B.; Phillips, N. H. J. Am. Chem. Soc. 1992, 114, 6577-6579.
- 33. Grüttner, G.; Krause, E. Chem. Ber. 1916, 49, 1415-1428.
- a) Yamada, J.-I.; Abe, H.; Yamamoto, Y. J. Am. Chem. Soc. 1990, 112, 6118-6120. b) Yamamoto, Y. Chemtracts, Org. Chem. 1991, 4, 255-271.
- 35. a) Carstens, A. Ph. D. Thesis, Univ. Kiel 1993. b) Carstens, A.; Hoppe, D. publication in preparation.
- a) Prelog, V.; Meier, H. L. Helv. Chim. Acta 1953, 36, 320-325. b) Whitman, C. P.; Craig, C.; Kenyon, G. L. Tetrahedron 1985, 41, 1183-1192.
- 37. a) Cram, D. J.; Gaston, L. K.; Jäger, H. J. Am. Chem. Soc. 1961, 83, 2183-2189. b) Enders, D.; Lotter, H. Angew. Chem. 1981, 93, 831-832; Angew. Chem. Int. Ed. Engl. 1981, 20, 820-821.
- 38. Cram, D. J.; Allinger, J. J. Am. Chem. Soc. 1954, 76, 4516-4522.
- 39. Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879-1880.
- 40. Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748-2755.
- 41. Note added in proof: For some 1-hetero-substituted alkyllithium derivatives, a rotation around the lithium-complexed C-X-bond was found to be rate-determining for racemization; the rate is decreased by ion-pair seperation (ref. 42). We believe that no conclusions can be drawn from this fact to the mechanism of racemization of a mesomerically stabilized chelate complex like **6**.
- a) Reich, H. J.; Dykstra, R. R. Angew. Chem. 1993, 105, 1489-1491; Angew. Chem. Int. Ed. Engl. 1993, 32, 1469-1471. b) Ruhland, T.; Dress, R.; Hoffmann, R. W., *ibid* 1993, 105, 1487-1489: 1993, 32, 1467-1469.

(Received 21 October 1993)